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ABSTRACT
Product search engines like Amazon Search often use caches to

improve the customer user experience; caches can improve both the

system’s latency as well as search quality. However, as search traffic

increases over time, the cache’s ever-growing size can diminish the

overall system performance. Furthermore, typos, misspellings, and

redundancy widely witnessed in real-world product search queries

can cause unnecessary cache misses, reducing the cache’s utility. In

this paper, we introduce ROSE, a RObuSt cachE, a system that is

tolerant to misspellings and typos while retaining the look-up cost

of traditional caches. The core component of ROSE is a randomized

hashing schema that makes ROSE able to index and retrieve an

arbitrarily large set of queries with constant memory and constant

time. ROSE is also robust to any query intent, typos, and gram-

matical errors with theoretical guarantees. Extensive experiments

on real-world datasets demonstrate the effectiveness and efficiency

of ROSE. ROSE is deployed in the Amazon Search Engine and

produced a significant improvement over the existing solutions

across several key business metrics.

CCS CONCEPTS
• Information systems → Query log analysis; Query intent;
Query reformulation.
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1 INTRODUCTION
Online shopping has become an essential part of consumers’ daily

lives in recent years and has seen a dramatic increase in demand

during the ongoing COVID-19 global pandemic. As a critical compo-

nent of an e-commerce website, the product search engine connects

the customer intent with the product selections. Improving the

product search engine’s performance is critical to a better shop-

ping experience. Two key factors impact the search engine’s per-

formance: (1) The response time to a customer request and (2)

Providing high-quality results that match the customers’ intent.

User studies show that slow responses cause perceived inter-

ruptions to the shopping experience and even site abandonment.
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Figure 1: ROSE helps improve the search quality and system
performance of product search engine. With ROSE, most of
the search traffic is covered with single digit milliseconds
latency. ROSE also improves search quality by mapping long-
tailed queries to normal queries in near constant time.

The response time is also a key factor for the product search en-

gine’s throughput planning. Modern product search engines are

usually composed of different expensive machine learning models

[1, 8, 9, 13, 20, 28, 29, 31], such as relevance matching models [18],

ranking models [2], and query annotation models [27]. Serving the

entirety of search traffic through expensive deep learning models

is prohibitive in real-world product search engines due to latency

limitations, and cost considerations [14]. Thus, instead of serving

all queries through these expensive deep learning models, a more

practical solution is to serve frequent queries from a cache.

However, traditional caches suffer from the trade-off between

the cache miss rate and the cache size. Having a small cache size

will lead to a high cache miss rate. On the other hand, as product

search engines scale, the set of frequently occurring queries be-

comes prohibitively large, and grows due to morphological variants

of queries with the same intent. For instance, ”Nike shoes”, “Nike

shoe”, and “Nike’s shoe” may all be cached queries due to their fre-

quency. These queries all share the same intent, and they artificially

inflate the cache size and diminish performance. Therefore, design-

ing a robust cache that is invariant to typos and morphological

differences is critical for scaling real-world search services since

it enables increasing the cache hit rate without correspondingly

increasing the latency and memory footprint.

Moreover, one key issue that hurts the quality of search results

is the presence of low-performing queries, which are queries for

which the search engine fails to return high-quality results. Analy-

ses show that most of these failure cases are due to typographical

errors [24]. These low-performing queries are usually lexically or

semantically similar to some frequently searched, well-performing

queries that produce satisfactory results. Thus, if we could map

these low-performing queries to a frequently searched query with

https://doi.org/10.1145/1122445.1122456
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the same intent via a robust caching mechanism, we would be

able to improve search quality. Furthermore, this query mapping

process would also reduce latency since product search engines typ-

ically cache these frequently issued queries and their corresponding

behavioral information for faster serving, as in Fig 1.

To solve these challenges, we propose ROSE to cache well-

performing or frequent queries to improve the response time and

search quality of the product search engine. The core component of

ROSE is a randomized hashing structure that indexes the query set

while preserving the lexical or semantic information. Specifically,

our paper includes the following contributions:

• Operational System:We introduce ROSE, a comprehen-

sive end-to-end solution for caching queries for product

search. ROSE can index and perform look-ups on web-scale

data in constant time and constant memory and is faster

than other alternatives by orders of magnitude.

• Technical Novelty:We invented a system that combines

multiple powerful randomized algorithmic techniques, in-

cluding locality sensitive hashing, reservoir sampling, and

count-based 𝑘-selection, in a novel way that together allow

us to scale upROSE to massive query sets while maintaining

constant-time retrieval.

• Real-World Impact: We deployed ROSE in the Amazon

product search engine, showing improvements in system

performance and business metrics when compared to the

existing solution.

2 BACKGROUND AND RELATEDWORK
We provide some background knowledge and formally define the

problem of indexing and retrieval for robust caches.

2.1 Robust Caches
Caching previously seen data is a central component of many

latency-critical applications such as search engines and databases.

A cache-hit happens when an incoming query matches one of the

cached queries. Many well-established methods such as hash ta-

bles and Bloom filters [16] focus on detecting exact key matches.

However, these methods are not robust to typos, lexical variants,

and semantic variants. For instance, the queries “Nike sheos”, “Nike

shoes”, “Nike shoe”, and “Nike’s shoe” are variants of the same

query “nike shoes”. These variants will cause a cache miss under

traditional exact-match caching methods. Historically, making a

caching method robust required expensive algorithms to compute

string similarity distances between a query key and the cached

keys. In this paper, we propose ROSE, a robust caching framework

that handles variants of input keys with near-constant time and

near-constant memory.

2.2 Locality-Sensitive Hashing
2.2.1 LSH Definition. We use locality-sensitive hashing (LSH), a

randomized hashing method, as the core algorithm in our work.

LSH is a family of hash functions such that a function uniformly

sampled from the family has the property that, under the hash

mapping, similar points have a high probability of having the same

hash value [32]. TakingH to be a family of hash functions mapping

R𝑑 to a discrete set {0, . . . ,𝑈 − 1} we can formally the notion of

locality-sensitive hashing.

Definition 2.1. LSH Family A family H is called (𝑅, 𝑐𝑅, 𝑝, 𝑞)-
sensitive if any two points 𝑥,𝑦 ∈ R𝑑 and ℎ chosen uniformly from

H satisfies the following property:

• if sim(𝑥,𝑦) ≥ 𝑅, then 𝑃𝑟ℎ∈H [ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝 .

• if sim(𝑥,𝑦) ≤ 𝑐𝑅, then 𝑃𝑟ℎ∈H [ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑞.

A collision occurs when the hash values for two points are

equal: ℎ(𝑥) = ℎ(𝑦). The collision probability is proportional to

some monotonic function of similarity between the two points, i.e.,

𝑃𝑟 [ℎ(𝑥) = ℎ(𝑦)] ∝ 𝑓 (sim(𝑥,𝑦)), where sim(𝑥,𝑦) is the similarity

under consideration and 𝑓 is a monotonically increasing function.

In other words, similar items are more likely to collide with each

other under an LSH mapping [23].

2.2.2 Minwise Hashing. Minwise hashing (MinHash) is the LSH

for Jaccard similarity [4]. The minwise hashing family of func-

tions applies a random permutation 𝜋 on a given set 𝑆 , and stores

only the minimum value after the permutation mapping. Given

two sets, 𝑆1 and 𝑆2, the probability of these sets having the same

MinHash value is the Jaccard similarity between the two sets:

𝑃𝑟 [min𝜋 (𝑆1) = min𝜋 (𝑆2)] = |𝑆1∩𝑆2 |
|𝑆1∪𝑆2 | .

In this work, we also leverage recent algorithmic advances in

computing weighted MinHashes [7]. Weighted MinHashing allows

us to take the importance of items in set into account. For instance,

with product-type preserving hashing, we would like to assign a

higher weight to the tokens corresponding to the product type.

Formally, as in [6], we define the weighted Jaccard similarity be-

tween two non-negative 𝑛-dimensional real vectors 𝑥 and 𝑦 as

𝐽 (𝑥,𝑦) =
∑

𝑖 min(𝑥𝑖 ,𝑦𝑖 )∑
𝑖 max(𝑥𝑖 ,𝑦𝑖 ) . As in the unweighted case, the probability

of two weighted sets having the same weighted MinHash value is

precisely the weighted Jaccard similarity.

2.2.3 Densified One Permutation Hashing. Another critical ingre-
dient in allowing us to build performant robust caches is the recent

progress in efficiently computing minhashes. In particular, we uti-

lize the densified one permutation hashing (DOPH) algorithm intro-

duced by Shrivastava [22]. DOPH is ideal for ultra-high dimensional

and sparse datasets and, in an improvement over prior minhashing

techniques, can generate multiple hashes in one pass over the data.

Ultimately, DOPH allows us to compute 𝑘 minhashes of a sparse

vector with 𝑑 nonzero entries in time 𝑂 (𝑑 + 𝑘) as opposed to the

𝑂 (𝑑𝑘) guarantee offered by classical algorithms.

2.3 Problem Formulation
In this subsection, we formally define the indexing and retrieval

tasks for a robust cache.

The indexing step is defined as follows: Given a set of queries

to be cached D, the indexing step constructs a cache structure 𝐶

that preserves the similarity information of input queries such that

we can map an unseen query 𝑞 ∉ 𝐷 to the most similar item in the

cache during the retrieval phase.

Thus, given the cache structure 𝐶 , we define the retrieval step

as follows: Given an input query 𝑞, we are interested in efficiently

computing𝑋 ∗ = argmax𝑥 ∈𝐷 𝑆 (𝑞, 𝑥),where 𝑆 (𝑥,𝑦) is the similarity

between two items 𝑥 and 𝑦.

Large-scale product search engines such a Amazon Search usu-

ally cache hundreds of millions of queries. Furthermore, the latency
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Figure 2: The overall framework of ROSE. ROSE contains two
phases: (1) Cache Index Generation: generating the robust
index using the input queries. (2) Online Retrieval: mapping
the input query to one of the queries in the cache.

threshold for cache is extremely low, milliseconds. Keeping these

factors in mind, the indexing and retrieval steps for our robust

cache are constrained by the following two conditions:

• Constant Retrieval Time: At run-time, the retrieval step must

finish in constant time regardless of the cache size.

• Constant Memory Usage: The memory usage of the cache

does not increase with the number of cached queries.

The similarity metric 𝑆 (𝑥,𝑦) is a critical factor of robust caches.
This paper shall focus on two intent similarity measures widely

used in product search engines: (1) Lexical Preserving Caching and

(2) Product Type Preserving Caching. We note in passing that one

can fit any other intent similarity measures into our framework.

Lexical Preserving Caching: A lexical preserving cache maps

a query to an existing set of queries while preserve the query’s

lexical information. For example, suppose we have a query "red nike
shoos". This query has a typo so we assume that it is not cached by

the search engine. In our cache, we may have the query "red nike
shoes" that is lexically similar with "red nike shoos". The problem of

lexical preserving query mapping is to map "red nike shoos" to "red
nike shoes" and perform the corresponding cache lookup.

Product Type Preserving Caching: Product type is the most

important attribute of queries to a product search engine. [18]. For

example, the product type for query "red nike shoes" is "SHOES."

Product type preserving caching maps the input query to a candi-

date query with the same product type.

3 ROSE: ROBUST CACHE VIA RANDOMIZED
HASHING

In this section, we describe ROSE, a robust cache for queries via
randomized hashing. ROSE contains two phases, Index Generation

and Online Retrieval, as illustrated in Fig 2. We first introduce these

two phases, followed by a theoretical analysis of ROSE in terms of

both time and memory complexity.

3.1 ROSE Index Generation
We design the index generation process of ROSE under two re-

quirements. First, the cache needs to capture the query similarity,

meaning that cache needs to take the similarity of queries into

account when performing look-ups to be robust to typos and se-

mantic variance. Secondly, due to the large-scale indexing space of

real product search engines, the cache size needs to avoid scaling

with the volume of queries.

To capture the textual similarity information, we use locality-

sensitive hashing (LSH) [10] for the index generation phase. LSH

generates signatures for input data under a certain similarity mea-

sure. The signatures generated by LSH capture the similarity in-

formation between queries such that similar queries have a high

probability of having the same hashing signature and thus colliding.

Since LSH is a randomized procedure, we boost the probability of

hashing similar queries together by maintaining 𝐿 independent

hash tables for our index. This work shall focus on two hashing

strategies: lexical preserving hashing and product type preserving

hashing. We will introduce the details of these two hash functions

in Section 3.3 and Section 3.4, respectively.

However, under the locality-sensitive hashing framework, the

size of the hash tables increases linearly with the volume of data [23]

which leads to an explosion in memory footprint when working

with web-scale data. To solve this problem, inspired by the work

in [26], we use a reservoir sampling strategy to fix our cache’s

memory usage and preserve the data’s similarity information.

The reservoir sampling algorithm [25] processes a stream of𝑚

numbers and generates 𝑅 uniform samples by only using an array

of size 𝑅, where 𝑅 ≪𝑚. Moreover, reservoir sampling only needs

one pass over the data, and does not increase the computational

complexity of the index generation process. We will provide a

theoretical analysis of this sampling strategy as applied in our

caching framework in Section 3.5.

Algorithm 1 summarizes the offline indexing algorithm of ROSE.
In Algorithm 1, 𝐵 denotes the number of buckets in the hash table,

𝐼𝑞 denotes the index generated by the hash function. The function

𝑅𝑎𝑛𝑑 (0, 𝐵) generates a random number between 0 and 𝐵.

Algorithm 1 ROSE Indexing Generation

1: procedure ROSE Index Generation

2: Input: number of hash tables 𝐿, number of hashes 𝐾

3: Initialize the hash functions 𝐻 , array of hash tables T.
4: for each query 𝑞 in D do
5: 𝐼𝑞 = 𝐻 (𝑞, 𝐾, 𝐿).
6: if T[𝐼𝑞] is full then
7: 𝑅 = Rand(0, 𝐵).
8: if 𝑅 < 𝐵 then
9: T[𝐼𝑞] = q

10: end if
11: Continue

12: end if
13: T[𝐼𝑞] = q

14: end for
15: return T
16: end procedure

3.2 ROSE Online Retrieval
Given a search query, we perform a robust cache lookup by first

computing the LSH signature of this query and looking up the

corresponding bucket in the hash tables.We then rank the similarity

of the cached queries within the bucket to the new search and return

the top result. However, under the standard LSH schema [16], we

still have to calculate the pairwise similarities inside the bucket

to retrieve the top result, which can be expensive, especially since

product search engines typically maintain strict latency budgets.
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To avoid this expensive pairwise similarity computation, we use

the strategy of count-based 𝑘-selection inspired by [15]. Across the

𝐿 different hash tables, we observe that the cached entries with

the greatest number of collisions with the new query are more

similar to the query text. This observation allows us to estimate the

actual ranking in an unbiased manner. We count each data point’s

frequency of occurrence in the aggregated reservoirs and rank all

the data points based on the frequency. By using this strategy, the

online retrieval process runs in constant time, as shown in Section

3.5.

3.3 Lexical Preserving Hashing
Our goal for lexical preserving hashing is to design a hash function

that preserves the lexical similarity among input queries. To achieve

this in product search, we use the Jaccard similarity to measure the

similarity between two queries, defined as the ratio of character

spans that two query keywords share, and use minhash [3] as the

corresponding LSH scheme.

Given a query 𝑄 of 𝑛 characters and 𝑚 words, we slice these

keywords into a set of subsequences consisting of character-level

sequences and word unigrams, denoted by S(𝑄) = {𝑐𝑖 }𝑛𝑖=1 ∪
{𝑐𝑖𝑐𝑖+1}𝑛−1𝑖=1

· · · ∪ {𝑤𝑖 }𝑚𝑖=1, where 𝑐𝑖 and𝑤𝑖 denote the 𝑖-th character

and word of the query, respectively. The length of the character sub-

sequence is a hyper-parameter. We find that a subsequence length

of 3 gave us the best results. We then use the recent advances in

densified one permutation hashing (DOPH) [22] to compute the

minhash signatures of S(𝑄) efficiently.

3.4 Product Type Preserving Hashing
In a product search engine, understanding the product type infor-

mation of a query is crucial to showing relevant results that match

the customer’s intent and avoid, for instance, returning dishwasher

accessories in response to a search for dishwashers. Thus, when

performing a cache lookup, it is critical that we map the original

query to one that preserves the original product type intent.

To preserve the product information, we add weights to product

type tokens in the query. The product type tokens are extracted by

a production NER model [30]. We use the same process as lexical

preserving hashing to generate the token set S(𝑄) for the input
query. We then assign weights to the tokens in S(𝑄) by the follow-

ing strategy: If a token is not a product type token, we give a weight

of 1.0. Otherwise, we assign weight𝑊 > 1 to this token. Here,𝑊 is

a hyperparameter in our algorithm. In our real-world experiments,

we find𝑊 = 10 gave us the best results. To generate the hash

signatures of the weighted set S(𝑄), we leverage recent advances
in efficiently computing weighted minhash signatures [7, 11, 21].

3.5 Theoretical Analysis
In this subsection, we analyze the complexity of our algorithm.

Indexing Step Time Complexity: In the proposed algorithm,

the average time complexity of computing the hashes for one query

is 𝑂 (𝐿𝑇 ), where 𝐿 is the number of repetitions of LSH and 𝑇 is the

average number of tokens per query. The complexity of generating

the entire robust cache structure is 𝑂 (𝐿𝑁𝑇 ) for a dataset with 𝑁
queries. In practice, 𝐿 and 𝑇 are small constants much less than 𝑁 ,

so we can consider asymptotic time complexity to be 𝑂 (𝑁 ). This

linear time complexity of building the cache gives our method a

significant scaling advantage to cache a massive amount of data.

Retrieval Step Time Complexity: The time complexity of

ROSE’s retrieval step is 𝑂 (𝐿𝑇 · 𝐵𝐿). 𝑂 (𝐿𝑇 ) is the complexity of

calculating the hash values for the incoming query. 𝑂 (𝐵𝐿) is the
time complexity of k-selection in the combined sets, where 𝐵 is the

bucket size. Therefore, the retrieval step’s overall time complexity

is 𝑂 (𝐿2𝐵𝑇 ), independent of the cache size 𝑁 . In practice, 𝐿, 𝐵 and

𝑇 are small constants. As a result, cache retrieval’s time complexity

is constant, which gives ROSE the decisive advantage for latency-

critical services like product search.

Memory Complexity: The memory usage of ROSE is 𝑂 (𝐵 ·
𝑁𝐵 ·𝐿), where𝑁𝐵 is the number of buckets in one hash table.𝑁𝐵 is a

hyperparameter and is a constant number independent of the cache

size. We can see that the memory usage is not increasing with the

size of the cache. This enablesROSE to achieve fast retrieval speeds

on massive data with minimal memory costs, an ideal combination

for industry-scale search engines.

Error Analysis: Due to the randomized nature of LSH, we note

that it is possible to map the original query to an unrelated bucket

with some small, but nonzero probability. However, we can dramat-

ically reduce this error probability by maintaining 𝐿 independent

hash tables. In the following analysis, we choose the lexical pre-

serving hashing for our study. All the theoretical analysis can be

generalized to product type preserving hashing.

Given two query keywords 𝑋 and 𝑌 , let 𝐶 denote the sum of

independent indicator random variables representing the number

of buckets in which 𝑋 and 𝑌 collide. We note that we can apply the

following Chernoff bounds [17] :

𝑃𝑟 [𝐶 ≤ (1 − 𝛿)𝐿𝑝 (𝑥,𝑦) ] ≤ exp

(
−𝐿𝑝 (𝑥,𝑦)𝛿2

2

)
𝑃𝑟 [𝐶 ≥ (1 + 𝛿)𝐿𝑝 (𝑥,𝑦) ] ≤ exp

(
−𝐿𝑝 (𝑥,𝑦)𝛿2

3

)
,

(1)

where 𝐿 denotes the number of repetitions (hash tables) and 𝑝 (𝑥,𝑦)
represents the collision probability between queries𝑋 and 𝑌 . These

bounds show that the random variable 𝐶 falls off from its expected

value exponentially quickly with the number of repetitions.

To illustrate the behavior of these bounds, consider two queries

“candi" and “corn" against the target query “candy." Assuming that

the pair (“candi", “candy") represents the same query while the tuple

(“corn", “candy") is unrelated, we note that the former pair has a

Jaccard similarity of 2/3 while the latter has a value of 2/7. We can

use the first Chernoff bound above to upper bound the probability

that the related pair (“candi", “candy") will not map to the same

bucket in the hash table. Similarly, we can use the second bound to

bound the probability that (“corn", “candy") will map to the same

bucket. In both cases, we are upper bounding the probability of a

failure case. Assuming that we set 𝐿 = 10, we choose 𝛿 accordingly

and find that

𝑃𝑟 [𝐶(candi, candy) ≤ 𝐿/2] ≤ 1.6 · 10−6

𝑃𝑟 [𝐶(corn, candy) ≥ 𝐿/2] ≤ 9 · 10−4

This practical illustration demonstrates the effectiveness of our

proposed method. We will provide empirical study in Section 4.
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4 OFFLINE EXPERIMENTS
Dataset: We sampled approximately 60 million well-performing

queries from Amazon search logs as our cache’s target set. Follow-

ing the same evaluation strategy in [19], our evaluation dataset

samples queries from three buckets: a) NQ: Normal Queries, which

are those in the top tercile of frequency, b) HQ: Hard queries sam-

pled from the middle tercile of queries by frequency, and c) LTQ:
Long-tail queries in the bottom tercile of frequency.

We randomly selected these queries from the search logs over

one month. Each of these three sets contains 1000 queries. We

obtained the re-mapped results for the queries from various query

caching strategies and used a group of highly trained human judges

to assign a binary relevance grade (relevant or irrelevant) to each

returned query with respect to the original query’s intent. This

relevant grade is used for calculating the performance metrics of

different methods.

Experimental Design: We designed the experiments to answer

two critical questions: a) Robustness: How accurate is ROSE’s
retrieval process? b) Efficiency: How efficient is ROSE’s indexing
and retrieval process? To answer these two questions, we test the

following methods:

• R-LP: This method is our proposed method, ROSE, with
lexical preserving hashing. The number of hash tables is

𝐿 = 36 and the number of hashes is 𝐾 = 3.

• R-PT: This method is our proposed method, ROSE, with
product type preserving hashing. All the other hyperparam-

eters are the same as ROSE-LP.
• EC [5]: This is the exact-match cache implemented as a

standard hash map. In the retrieval phase, the Exact-only

cache returns the exact match candidates.

• BF: This is a cache structure designed by replacing ROSE’s
retrieval algorithm with brute force search. We use edit dis-

tance as our similarity measure, computed via a dynamic

programming algorithm
1
.

• FC: This is a designed cache structure for embedding vectors

by replacing ROSE’s indexing and retrieval algorithm with

FAISS [12]. We obtain the embeddings for each input query

using a semantic product embedding model [18]. We choose

the hyperparameters suggested by [12].

We adopted three commonly used metrics for offline evaluation:

Precision, Recall, and 𝐹1 Measure. To compute these metrics, we

utilize human judgments of relevance. We also analyze the speed of

different methods for the indexing generation time and the online

retrieval time.

Overall Performance: The results of all methods under the five

metrics are presented in Table 1. Compared with other methods,

ROSE performs the best on all three datasets. Specifically, ROSE
offers a relative performance gain of 1.2% in Recall and 2.0% in

F1 over the best baselines averaged across the three datasets. In

particular, we find that the improvements of ROSE-PT on Nor-

mal queries and Hard Queries are more significant than Long-tail

queries. On the other hand, ROSE-LP performs better on long-

tail queries compared to ROSE-PT. Additionally, ROSE not only

achieves a superior quality over these competing methods, but does

1
https://www.geeksforgeeks.org/edit-distance-dp-5/
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Figure 3: System overview for ROSE in Amazon Search

so with much better efficiency.ROSE is significantly faster in terms

of index generation time and online retrieval time. In particular,

ROSE-LP completes the index generation process in 65 minutes

while ROSE-PT requires 75 minutes. Compared with other caches

such as BF-Cache and FAISS-Cache, ROSE has a decisive speed

advantage. ROSE can finish the online retrieval process in around

2ms, while FAISS-cache needs 120ms and BF-Cache requires 65

minutes. In summary, ROSE shows strong retrieval performance

with extremely low latency and minimal cost, which makes it a

compelling solution for latency-critical services such as product

search engines.

5 SYSTEM DEPLOYMENT IN AMAZON
5.1 ROSE for Query Rewrite
We deployed ROSE within the Amazon.com product search engine

to rewrite problematic user queries, such as those with typos, to

alternative queries that provide a better user experience. We refer

to this system as ROSE-QR. Leveraging lexical-preserving hashing,
ROSE-QR maps an incoming query to one of the existing cached

queries that have high-quality results according to lexical similarity.

We ran an online A/B experiment on the Amazon search engine

to test ROSE-QR’s impact on the user experience. In the online

experiment, users in the treatment group saw expanded search

results from the alternative queries generated by ROSE-QR. Profes-
sional human judges measured the quality of the top search results

shown in each arm of the experiment. We tracked the reduction

of recall failures when the search engine does not return enough

results for the user queries. We also measured business metrics

such as revenue and purchased units. Our system did a better job in

providing more relevant results, as measured by human evaluators,

and significantly improved several business metrics as shown in

Table 2.

5.2 ROSE for Product Type Annotation
The intended product type, such as shoes in the query "red nike
shoes", is the most critical information in a user query. Identifying

the correct product type from the query helps the search engine
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Data set Metrics ROSE-LP ROSE-PT Exact-Cache BF-Cache FAISS-Cache

Normal Queries

Precision 0.88±0.03 0.96±0.01 1.00±0.00 0.90±0.02 0.96±0.08
Recall 0.81±0.02 0.90±0.04 0.50±0.04 0.88±0.02 0.89±0.09

F1-Measure 0.84±0.05 0.93±0.08 0.70±0.04 0.89±0.09 0.92±0.03

Hard Queries

Precision 0.78±0.01 0.90±0.03 1.00±0.00 0.80±0.03 0.89±0.07
Recall 0.80±0.09 0.86±0.05 0.52±0.05 0.79±0.08 0.85±0.07

F1-Measure 0.79±0.06 0.88±0.09 0.39±0.06 0.79±0.08 0.87±0.07

Long-tail Queries

Precision 0.77±0.03 0.73±0.06 1.00±0.00 0.76±0.04 0.75±0.02
Recall 0.79±0.04 0.76±0.03 0.12±0.03 0.75±0.03 0.78±0.02

F1-Measure 0.74±0.05 0.74±0.05 0.21±0.03 0.75±0.04 0.76±0.05
Index Generation Time 65m±5m 75m±5m 10m±1m 0m±0m 120m±10m
Cache Retrieval Time 1.8ms±0.3 ms 2.1ms±0.2ms 0.1ms±0.1ms 65m±3m 120ms±20ms

Table 1: Offline Experiment Results. ROSE shows strong performance across both retrieval quality and system performance.

retrieve the correct products and display a search result page layout

customized for each product type.

We implemented ROSE to cache the intended product type of 5-

10 million frequent queries. For an incoming tail query,ROSEmaps

the query to a few cached queries and uses the retrieved cached

product types as the prediction for the tail query’s product type. To

evaluate the impact on user experience, we used our ROSE product

type prediction model to filter out irrelevant search results with the

wrong product types. We deployed this system in the Amazon.com

product search engine and measured the search defect rate with

and without product type recognition. We define the product type

defect rate as the number of products in the top 16 results with the

wrong product type. From Table 2, we observe that, by using ROSE,
the defect rate decreased by 1.7%, a significant improvement to the

user experience.

ROSE-QR Metric Gain

Revenue +0.42%
Purchases +0.30%
Click-Through Rate +7.26%

Filter Method Defects Rate

No Filtering 11.1%

ROSE-PT 9.4%

Table 2: Production Impact of ROSE in Amazon Search

6 CONCLUSION
With the dramatic growth in e-commerce adoption during the on-

going COVID-19 global pandemic, there is a pressing need to build

scalable search systems that can gracefully handle this heightened

consumer demand while preserving or even improving the search

quality. Towards this end, in this paper we present ROSE for prod-

uct search. ROSE is a robust cache that maps an online query to

cached queries by preserving the query intent (lexically or seman-

tically). Our proposed system is highly scalable and can deal with

hundreds of millions of candidates in constant time and constant

memory. We provide both a theoretical analysis of ROSE as well

as an extensive offline evaluation. We deployed ROSE in the Ama-

zon.com search engine and witnessed significant improvement over

the existing solutions in terms of system performance and business

metrics. In the future, we hope to apply the core ideas of ROSE

towards improving the performance of additional information re-

trieval systems that may benefit from the flexibility and scalability

of robust caches.

(a) Top 4 results without product type restriction.

(b) Top 4 results with product type restriction.

Figure 4: The top-4 results for the query "dishwasher".
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