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Abstract

Query similarity prediction task is generally solved by regres-
sion based models with square loss. Such a model is agnostic
of absolute similarity values and it penalizes the regression
error at all ranges of similarity values at the same scale.
However, to boost e-commerce platform’s monetization, it
is important to predict high-level similarity more accurately
than low-level similarity, as highly similar queries retrieves
items according to user-intents, whereas moderately similar
item retrieves related items, which may not lead to a pur-
chase. Regression models fail to customize its loss function
to concentrate around the high-similarity band, resulting
poor performance in query similarity prediction task. We
address the above challenge by considering the query predic-
tion as an ordinal regression problem, and thereby propose
a model, ORDSIM (ORDinal Regression for SIMilarity Pre-
diction). ORDSIM exploits variable-width buckets to model
ordinal loss, which penalizes errors in high-level similarity
harshly, and thus enable the regression model to obtain bet-
ter prediction results for high similarity values. We evaluate
ORDSIM on a dataset of over 10 millions e-commerce queries
from eBay platform and show that ORDSIM achieves substan-
tially smaller prediction error compared to the competing
regression methods on this dataset.
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1 Introduction

For e-commerce platforms, like eBay, Amazon, Alibaba, etc.
finding queries, which are similar to a user query is a funda-
mental task. Solving this task benefits various platform fea-
tures, such as “related searches”, “query expansion”, “recov-
ery from zero recall”, “auto complete”, and “improve spelling”.
These features enable extending the scope of search, thus
improving the probability of retrieving all relevant items
for a given query. Expanding the scope of a search is par-
ticularly important for queries, for which the user query
alone does not reflect buyers’ intent effectively—also needed
for queries for which the word tokens in the query have
poor match with the word tokens of the most relevant items.
Traditional information retrieval based document similarity
prediction methods generally preform poorly for the case
of e-commerce queries because of the facts that queries are
often shorter, strongly sensitive to the context, and lack syn-
tactic structure.

An e-commerce platform can use different cues for com-
puting similarities between two queries. The obvious cue is
word token based similarity, i.e., two similar queries would
share substantial fractions of the word tokens. For example,
the following four queries: “Dell xps Laptop", “Dell xps 15",
“Dell 15 laptop", “Dell 15 inch laptop", all have high word level
similarity and all of these queries are from a buyer, whose
intention is to buy a “Dell laptop". Token level similarity is
easy to compute as the queries generally differ only in stem-
ming, word order, addition/omission of words, etc. Also in
terms of query similarity, token based similarity yields high
precision results. Finally, token based similarity is simple to
understand, and easy to explain. However there are some
downside of token level similarity. Often, there are false pos-
itives; for instance, “kiss” is not “kisses”, “dress shirt” is not
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the same as “shirt dress”. So, the similarity model requires
to have guardrails to avoid embarrassing mistakes. Another
downside is that token level similarity have limited coverage,
and extending it significantly increases the risk of generating
false positive results.

Besides token level similarity, there are other indirect mea-
sures which can establish the fact that two queries are similar.
The mostly used e-commerce platforms work with session-
based similarity. Generally, if a committed buyer uses two
queries in the same search session, then with high likeli-
hood these two queries are similar. Also, queries that are
semantically related are similar. For example, one query can
be a generalization or specialization of another query; both
the queries can be for items which are replaceable (different
brand, size); they can be for fitting, matching, complemen-
tary, accessory, or bundle items. Two queries can also be sim-
ilar if they belongs to the same node in the item taxonomy
tree. Note that, the different similarity cues may be indica-
tor of different levels of similarity. Token-based similarity,
aspect-based generalization, or specialization generally indi-
cate high degree of similarity, as such, the query pair would
be intended for identical or replaceable item. On the other
hand, similarity derived from other cues, such as, session-
based similarity or taxonomy-node similarity may not be
for identical item. For instance, “samsung 85 inch tv” and
“wall mount for tv” are two queries which are similar as both
belongs to electronics category, but such similarity is rela-
tively small as the queries are not for identical or replaceable
items.

In e-commerce domain, queries follow a power-law dis-
tribution in terms of their frequencies over the site. Based
on this, queries can be classified into head, torso, and tail
queries. Due to the long-tail distribution, a significant num-
ber of queries belong to tail queries. Unlike head and torso
queries, query similarity models perform much poorly for
tail queries for many reasons: first, tail queries do not have
significance presence in search session; second, not many
product titles are associated with these queries; and most
importantly, the user engagement data such as, click, view,
and purchase rate for these queries are sparse and unreliable.
So, it is better to learn query similarity for these queries by
using a supervised learning setup. In such a setup, we train
a model which takes representation of a pair of queries and
their similarity values as input such that once the model is
trained, it can be used to predict similarity between a pair of
tail queries for which direct computation of query similarity
is not accurate. We call this task query similarity prediction,
which is the focus of this paper.

Given that query similarity is a continuous value, super-
vised prediction of this value seems to be a straightforward
regression task. However, for better interpretation, the simi-
larity value should be a closed range, such as, between 0 and
1. This makes it a regression task with additional constraint
that the target value should be between 0 and 1. Another
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important requirement is that we want to predict high-level
similarity (say similarity above 0.90) more accurately than
low-level similarity (say between 0.5-0.9). This is due to the
fact that correct usages of highly similar query helps buyers
to retrieve her desired item and significantly boost platform’s
monetization. This is similar to the fact that in information
retrieval accurate ranking of search results at the head is
much more important than the same at the torso or tail. Un-
fortunately, a regression task with square loss is agnostic
of absolute similarity values and such a loss penalizes the
error at all ranges of similarity values at the same scale. So,
alternate models are needed which can prioritize the accu-
rate similarity prediction of high similarity values than low
similarity values.

For supervised prediction of query similarity, the way
the queries are represented is an important consideration.
While existing works uses off-the-shelf text embedding meth-
ods [2,5, 6,9, 18, 21, 27], we explore different text embedding
options to identify better query representation vectors for
the task of query similarity prediction for e-commerce data.

In this work, we solve supervised query similarity pre-
diction task by designing an ordinal regression model using
neural networks. Our solution puts strong emphasis on the
high similarity value ranges than low similarity value ranges,
which serves a critical need in the production environment.
Note that, although introducing more similarity buckets can
make the query similarity prediction task a ranking problem,
we do not intend to solve a ranking problem since within
a similarity bucket the ranking among queries based on
similarity scores is more often noise. We also develop in-
novative query representation vectors using spherical text
embedding [20], which shows improved performance over
well-known BERT [9] -based text embedding. Using U, an
eBay dataset with around 10 million queries, ORDSIM shows
substantial improvement over the existing state-of-the-art.

2 Related Works

Document similarity prediction is a well studied task in
the information retrieval domain [10, 26, 33, 34, 36]. How-
ever, most of the works in this domain predict similarity
for web documents or traditional textual literature. These
works are poor fit for e-commerce queries as e-commerce
queries are short, and lacks syntactic structure. Among the
existing works, Fuchs et al. [11] focuses on similarity on
e-commerce product listings. They use pairs of listing titles
and their matching search queries, and leverage a contex-
tualized character language model, L2Q works as a bidirec-
tional recurrent neural network to produce token importance
weights. They demonstrate that plugging these weights into
relatively straightforward listing similarity methods signifi-
cantly improve the similarity results. A plenty of researches
are performed for query suggestion which are generic and
more applicable for search engine queries [25, 29]. There
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exists an unsupervised approach for query suggestion in
e-commerce domain where the query similarity scores are
calculated based on popularity and purchase-efficiency of
queries [13]. Other works focus on query re-writing among
which Shing et al. provide an unsupervised approach [31],
and Hirsch et al. [15] focus on whether a user will reformu-
late a query, Aritra et al. [19] generate synonyms for query
rewriting, and Xiao et al. [37] focuses on dataset generation
to reduce the gap between user query and product listings.

We adopted spherical text embedding based query rep-
resentation in this work. In earlier works, representation
learning in e-commerce domain is performed using feature
engineering [3, 32]. Traditional embedding approaches [11]
or joint embedding of queries and items into a common vec-
tor space [1] are also considered. For text representation,
a plenty of research have been performed which include
Word2Vec [23], GloVe [27], FastText [5], ELMo [28], Flair [2],
TSDAE [35], InferSent [8], QuickThought vectors [18], Uni-

versal Sentence Encoder [6] and perhaps most notably BERT [9].

Recently, spherical text embedding [20] has been considered
for text embedding, in which a text snippet is embedded on
the surface of a d-dimensional unit sphere. In this work, we
show that for short text, like e-commerce queries, spherical
embedding performs better that BERT-based embedding.

A plenty of research works are performed in ordinal regres-
sion [4, 7, 12, 14, 16, 17, 38]. Among these, Wenzhi et al. [22]
uses a neural network architecture with a non-traditional
loss function which is particularly suited for the ordinal
regression task. CORAL model can perform ordinal regres-
sion directly[22] and works with the last layer of a neural
network like ORDSIM. Instead of one softmax unit at the
output layer, K — 1 sigmoid classifiers are designed for ordi-
nal regression where K is the total number of ordinal labels.
Additionally, Jason et al. [30] compiled a list of loss functions
for ordinal regression and discussed their relative strength
and weakness.

3 Problem Formulation

Let D = {x;, y,-}fil be a training dataset comprised of N
data instances where i’th training sample x; contains two
e-commerce queries g1, and gz, i.e. x; = (q1, q2). Since most e-
commerce platforms have tool-set for automatically allocate
the query to one or multiple taxonomy nodes, we assume
that ¢4, and c; are associated taxonomy nodes of query ¢,
and qq, respectively. Furthermore, y; is the similarity value
of the two queries in x;, where 0 < y; < 1. Supervised query
similarity learning task is to train a model so that the model
is able to predict the similarity value between two queries
for which the similarity value is unknown.

For training we use D, a subset of U which contains 6 mil-
lion query-pairs and their similarity values as obtained from
Cosine similarity of the embedding vectors of two queries
in a pair. Distribution of similarity values in U is shown in
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Figure 1. Implication of range of query similarity values

Figure 2. Left side of Figure 2 shows the distribution of the
similarity values, and the right side of the figure shows the
cumulative distribution of the same data. As we can see from
these charts, the distribution of similarity values are skewed
towards higher similarity values. In fact, most similarity val-
ues are higher than 0.5. About 36% of similarity values in
the dataset falls between [0.95, 1]. This above behavior is ex-
pected because g1 and g2 are not uniformly chosen random
query pair, rather they are related queries through product
listing, user session, taxonomy node mapping, etc. The jus-
tification of using related query-pairs for U is as follows:
If two queries are not related, predicting their similarity is
not important because they are usually not even candidates
for query reformulation or query expansion/modification.
On the other hand if multiple queries are highly similar to
a given query, most of them are candidates for query re-
formulation or query expansion/modification and a correct
ordering among the candidates is critical. Hence, the dataset
only contains query-pairs that are known to be similar with
a high similarity value and our task is to correctly rank the
similar queries of a given query by predicting the correct
similarity values using a supervised model.

In Figure 1, we provide a real-life example from query
set. Say, a query is “usb-c to lightning"; from our query em-
bedding vectors, three most similar queries to this query
are: “usb-c to lightning cable", “usbc to lightning", and “usb-c
adapter” with similarity values 0.99, 0.98, and 0.95. Among
these three queries, “usb-c adapter" is actually a different
object even though the similarity value is a whopping 0.95!
A correct ordering of the similar queries can help filter out
false-positive similar queries with high similarity values.
This example demonstrates that correct similarity predic-
tion at a high similarity value is much more important than
the same at a moderate or a low similarity value. One can
also formulate this problem as a ranking problem, where the
similarity rank orders at the head of the list is much more
important than the similarity rank order at the torso or tail.
Nevertheless, we do not want to solve this problem as a full
ranking problem as the ranking model has higher complexity
due to larger number of rank order constraints; specifically,
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(b) The cumulative distribution of the queries based on similarity
values

Figure 2. Distribution of the similarity values in the original dataset for query similarity prediction

for a given query if we consider k similar candidate queries,
we have w(k?) binary rank order constraints.

A key challenge for solving this problem using regression
is that it penalizes the prediction error at all ranges of simi-
larity values at the same scale. However, for our dataset, U
very high similarity value represents identical query, mod-
erate similarity value represents replaceable, alternate, or
generalization/specialization of a query, and small similarity
value represents query for other related items. Among these
correctly predicting the similarity between highly similar
queries is much more important than correctly predicting
the similarity between moderate or small similarity queries.
For instance, predicting the similarity value of 0.97 as 0.93
is much worse than predicting 0.70 as 0.74, although both
have a deviation of 0.04.

To prioritize correct prediction of highly similar queries,
we model the supervised query similarity prediction task
as ordinal regression with ordinal value from non-uniform
bucket size. At the high similarity value range, the bucket
width is small, so a small deviation would cause an ordinal
value error. On the other hand the bucket width is large at
small similarity value. For instance, for the similarity data
shown in the graph in Figure 2 (left),

For example, we can bucket the queries into five classes
with the following similarity range (bucket) to ordinal label
mapping: (0 — 0.82] — 0,(0.82 - 0.9] — 1, (0.9 — 0.95] —
2,(0.95—-0.97] — 3,and (0.97—1] — 4. Obviously higher or-
dinal label denotes higher level of similarity. Using the above
bucketing, for our query similarity dataset, U each bucket
contains approximately 1.2-1.6 million queries but due to
right skewed distribution, ordinal label representing high
similarity value has a very small similarity value range, on
the other hand ordinal value with small similarity value has
a very large range. For instance, If there are two similarity
values, say 0.4, and 0.65, both similarity are considered to be
the same by ordinal label. On the other hand, similarity value
above 0.97 is considered higher similarity than the similarity

value of 0.95, as the former has an ordinal label of 4 and the
latter has an ordinal label of 3. This non-uniform similarity
width bucketing forces the model to correctly distinguish
query similarity between Label 3 and Label 4; although both
represent very high similarity (above 0.95), Label 4 may rep-
resents two queries which retrieves identical objects, on the
other hand, Label 3 may not do so. We use H to denote the
similarity value to ordinal label function.

3.1

Finding correct Ordinal buckets for similarity values in e-
commerce queries requires experts’ observations and exper-
tise. Additionally, the method of similarity calculation and
distribution of the similarity values are also important. In
this work the similarity values are Cosine similarities be-
tween the vector representations of corresponding query
pairs.

A carefully designed map function H transforms y; — [;
where [; is the ordinal label of y;, and I; € {r; }f: , such that
r1 < ry < .. <rg. The goal is to represent x; in such a way
that an Ordinal classification task captures the best ranking
function

f : X — [ which minimizes a loss function, £.

Mapping Similarity Value to Ordinal Label

3.2 Could we perform multi-class classification?

If we consider the ordinal label as one class in a set of classes,
then this task can also be solved as multi-class classification.
However, for multi-class classification on such data, the cat-
egorical cross-entropy loss for wrong prediction of a single
instance is constant and is oblivious of the magnitude of
ordinal loss. So, on such data, multi-class classification is a
poor fit.

Say, P be a loss matrix of shape K * K where Py, is the
loss for predicting the label [ as ry. Note that for both classi-
fication and ordinal regression, the loss #;; = 0 and ¥, > 0
when [ # ry. For classification, misclassification loss, Py, is
fixed Yk € [1 : K], where [ # r¢. But for ordinal regression,



ORDSIM: Ordinal Regression for E-Commerce Query Similarity Prediction

Representation Learning

e e

—
]
q;
B

Dense Layer
with Dropout

Dense Layer
with Dropout

ISIR-eCom 2022 @ WSDM-2022, Feb 25, 2022, Phoenix, AZ

- 01 6, 03 6, 0Os

- AN
B

J

2 )

| 4

1w ,
Loss = ~ Z(yi - 8)
=

Minimizes Loss and Buckets the
Predictions using map function 7{

Figure 3. lllustration of ORDSIM model to perform query similarity prediction task. q;, and g, are passed for representation
learning followed by a multilayer perceptron and ATMSEL loss function in the output layer to perform ordinal regression.

the loss varies based on the magnitude of ordinal gap be-
tween the actual label and the predicted label; for instance,
one can define the ordinal loss #j,, = |l —ri| as both [ and r
are numeric values. Hence, ordinal regression is a preferred
task over the multi-class classification, as the former reflects
the extent of loss more accurately.

3.3 Methodology

ORDSIM uses a neural network based model for performing
ordinal regression for query similarity prediction. Specifi-
cally to build ORDSIM, we design the output layer of a neural
network so that it can adopt an ordinal loss function. In this
way, ORDSIM is architecture independent and any neural
network model can be made an ordinal regression model
only by applying ORDSIM’s output layer. Below, we discuss
ORDSIM’s loss function which the model optimizes.

3.3.1 Loss Function. We design a loss function for ORD-
SIM, which we refer as “All Threshold Mean Squared Error
Loss function”, in short, ATMSEL. For a multi-layer percep-
tron, for an instance (x;,y;), say /; is the mapped ordinal
label, after using mapping function H on y;. ATMSEL pe-
nalizes a predicted instance based on how far the predicted
score (§;) is from the mid-range of [; bucket. If 6, is the
mid-range of ordinal bucket [;, the ATMSEL loss function
can be represented by the following equation:

N
1
ATMSEL = — Z@f - 6,) 1)
i=1

During training, the loss function ATMSEL is applied at
the output layer of the perceptron over a mini-batch and
the model is trained by using backpropagation. In Figure
3, towards the right side, we show the mid-range of all K
ordinal buckets (K = 5 ordinal bucket are shown in the

figure). Note that, both y; and §j; are similarity value between
0 and 1. Their ordinal representation is only utilized in the
loss function in Equation 1. Also note that in our current
work, we fixed the left and right interval of similarity values
for an ordinal label by observing the distribution of similarity
values, but one can also adopt a more sophisticated methods
for obtaining the similarity interval for each ordinal label.

To train the model let x; = (g1, q2) be the i’th training
sample of D. The representation vector of x; is the input of a
neural network which is connected to two dense layers. Say,
for the data instance x;, a;,, a;,, ... ,a;, are the output values
of the penultimate layer of the network. If, the weights asso-
ciated with these values are wy, wy, ... ,w; respectively. the
predicted similarity value, ¢, is calculated by the following
equation.

T
gi= ) ay, # w; (2)

j=1
For instance, say an actual similarity value of two queries
in the train dataset is 0.95 which resides between (0.9-0.95]
bucket, and 0;, = 0.925, and the corresponding predicted sim-
ilarity value g; is 0.901. As ATMSEL penalizes based on devi-
ation from 6,, the error for this instance is (0.901 — 0.925).
Furthermore, while ATMSEL is minimized, the predicted
values tend to get centralized to the median of the corre-
sponding buckets. That is why ATMSEL can capture the

query similarity buckets better than other methods.

3.3.2 Model Architecture. We illustrate the architecture
of the deep learning model in Figure 3. The main model is
kept same for both CORAL and ORDSIM. To describe the
model, recall x; = (g1, q2) where x; € D. Both g; and g,
contain query text and category path text information which
are shown by two circles and two squares respectively as
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described in the left side of Figure 3. q; and g, are then passed
for representation learning. The embedding of ¢; and g, are
the inputs of the main model. Followed by the embedding
layer, two hidden layers are added with N, and N; neurons
with dropout probabilities of p; and p; respectively. For both
hidden layers we use ReLU activation function. The last
layer differ between CORAL and ORDSIM. While we have
already demonstrated ATMSEL loss function for ORDSIM,
the CORAL model introduces K — 1 sigmoid classifiers to
perform the ordinal regression task.

3.4 Evaluation Metric

The evaluation metric for ordinal regression should mea-
sure the extent by which the predicted ordinal labels deviate
from the actual ordinal labels. However, neither the actual
similarities (y;s), nor the predicted similarities (7;s) are ordi-
nal. So, we first map both y; and g; to ordinal values using
the map function H. Say, the corresponding ordinal label of
both y; and §; are [; and I;, respectively. Then the evaluation
metric Mean Average Label Error (MALE), is defined by the
following equation:

N
1 .
MALE denotes the extent by which a predicted ordinal label
deviates from its actual ordinal label.

3.5 Representation Learning

For applying the neural network model for the query simi-
larity prediction task, the queries need to be represented as
vectors in real space such that similar queries are embedded
in close proximity which enables high query-query similarity
prediction. We perform this through representation learning.
Given the dataset D = {x;, yi}f’, x; = (q1, q2) consists of a
pair of e-commerce queries. For both the datasets ) and U
we also have a product taxonomy node (aka category node)
associated with each query, so we leverage the category in-
formation to learn better representation of the queries. One
can simply ignore the category as part of query representa-
tion if such information is not available. Both queries, and
categories are text data, but the categories are also organized
in a tree structure which we refer as category tree. For a
query, along with the query text, the path-label of the nodes
along the path from the root to the associated category node
in the category tree is used for query representation.

To illustrate let a query be “t shirts for men pack”; for D,
the category for this query is Shirt. In the category tree the
path to the Shirt node has the following labels: Clothing-
>Men’s Clothing->Shirt. The text tokens in this path-label,
along with the text token from the queries are embedded in
a vector space to obtain for embedding of the query. Many
text embedding methods, such as, BERT [9], Word2Vec [21],
FastText [5] are popular in the information retrieval domain,
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but they are more suited for traditional text documents. E-
commerce queries are different from traditional text docu-
ments as the former lacks proper syntactic structure. Ad-
ditionally, most of the embedding methods like BERT [9],
Word2Vec [21], FastText [5] depend on training a large cor-
pus such as Wikipedia, Google and the sentences in these
datasets are different than e-commerce queries as most of
the sentences in the datasets are complete and natural. This
motivates us to build an alternative approach for query em-
bedding, after modifying eBERT using spherical query em-
bedding. Below we provide more details about these tools.

3.5.1 BERT and eBERT. Bidirectional Encoder Represen-
tations from Transformers (BERT) is proposed by researchers
from Google [9] which is not trained on any specific down-
stream task but instead on a more generic task called Masked
Language Modeling. The idea is to leverage huge amounts
of unlabeled data to pre-train a model on language mod-
eling. Predicting the next word(s) given a context already
requires understanding language to some extent. Next, this
pre-trained model can be fine-tuned to solve different kinds
of NLP tasks by adding a task specific layer which maps the
contextualized token embeddings into the desired output
function.

eBERT! is an e-commerce specific version of the BERT
model. Along with the Wikipedia corpus, 1 billion latest
unique item titles are collected to train the model. The eBERT
model can represent the e-commerce terms better than just
using only Wikipedia corpus. In this work, to train the mod-
els, we use eBERT to embed both query and category text.
We keep the embedding dimension of eBERT similar to BERT
which is 768.

3.5.2 Spherical Text Embedding. Directional similarity
is often more effective in tasks, such as, word similarity and
document clustering. When textual units are embedded in
the Euclidean space, two textual units may have zero direc-
tional distance, yet they are far from each other by Euclidean
distance. This is not desirable when we are trying to predict
the query similarity values, which are between 0 and 1, and
was computed by directional similarity (Cosine) of two vec-
tors. To overcome this, spherical text embedding [20] has
been proposed, which embed the textual units on the surface
of a unit d-sphere (d is the dimension). To learn embedding on
unit d-sphere, an efficient optimization algorithm is proposed
with convergence guarantee based on Riemannian optimiza-
tion. Spherical text embedding shown to be highly effective
on various text embedding tasks, including word similar-
ity and document clustering. For embedding e-commerce
query text, we also choose spherical text embedding as a
candidate. To build the corpus of spherical text embedding,

https://www.enterpriseai.news/2021/09/15/heres-how-ebay-is-using-
optimization-techniques-to-scale-ai-for-its-recommendation-systems/
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besides Wikipedia sentences, we introduce all of the 10 mil-
lion e-commerce queries in the dataset, U. We choose the
dimensionality of the sphere as 100 as recommended by the
original authors. We use each word as a textual unit for em-
bedding task and then apply mean pooling over the words
of a query to obtain query embedding vectors.

3.5.3 Poincaré Embedding. While BERT, eBERT, and
spherical text embedding embed the category names as text
data, the hierarchy information of the category nodes re-
mains untapped by the embedding methods. Since the cate-
gories form a tree, and Euclidean space is not a good fit for
representing a tree structure, in recent works many embed-
ding methods are proposed which embed a tree-like data in
hyperbolic space; for instance, Nickel et al.[24] propose to
embed a tree in a n-dimensional Poincaré ball. The neigh-
boring vertices in the tree are expected to get closer in the
hyperbolic space in terms of Poincaré distance. The loss
function is optimized by Riemannian optimization.

In this work we embed the category tree described in sec-
tion 3.5 with Poincaré embedding, and embedding of the
category is used to perform different experiments. Note that,
we do not have query embedding with Poincaré Embed-
ding as the queries do not form any tree-like structure. To
embed the category tree with Poincaré model we tune the
embedding dimensions in range [5,120] with an interval of 5.
Furthermore, the epochs are tuned in range [50,1000] with an
interval of 50. The best embedding is picked in terms of best
Mean Average Precision (MAP) which we get for dimension
= 10, and epoch = 500.

3.6 Embedding of Query Pairs for Similarity
Prediction

Recall D = {x;, yi}llv where x; = (q1, q2)- Both ¢; and q; con-
tain query text, but category information may or may not
be added with g; and q,. If category information is excluded,
we simply embed query text using mean pooling of word
token representations. For the other two way of representa-
tions, category information is added. To embed query text
we use both eBERT and spherical text embedding. While
for category embedding along with eBERT and spherical
text embedding, we use Poincaré model as well. To embed
category path with eBERT and spherical text embedding
mean pooling of the whole category path word tokens rep-
resentations is used. In contrast, only the last category in
the category path, which is the actual category is embedded
with Poincaré model to represent category embedding.

4 Experiments and Results

We perform comprehensive experiment to show the effective-
ness of ORDSIM for query similarity prediction. Besides, we
also perform experiments to show how different embedding
choices affect the performance of query similarity prediction
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Figure 4. Frequency Distribution for Different buckets of
Ordinal Labels

task. Below we first discuss the dataset, and competing meth-
ods, followed by experimental results of the experiments.

4.1 Dataset

Our dataset, U contains two eCommerce queries, their cate-
gory nodes in terms of a prototypical e-commerce taxonomy,
and the ground truth similarity values between a pair of
queries. We build the ground truth similarity value between
two queries by building association between two queries
through the product titles aka listings against those queries.
For a given query, we first rank the listings based on hit rate
and purchase rate. Once there is a ranking of listings with re-
spect to a given query, the corresponding query is embedded
by mean pooling of the top product titles’ representations
where the product titles are embedded using fasttext em-
bedding method[5]. Then the similarity values between two
queries are simply Cosine similarities of the corresponding
query pairs’ representation vectors. Note that for U, titles
are missing but similarity values are provided. The goal of
ORDSIM is to represent the queries without using product
titles such that the similarity between queries can be cap-
tured. Note that it is not expected that every e-commerce
query will have associated meaningful and adequate product
titles. That’s why the query similarity prediction task aims
to capture the most similar queries irrespective of having
adequate associated titles.

The parent query similarity prediction dataset, ¢ con-
tains 10 million entries, from which train, test and validation
datasets are sampled randomly maintaining 6:2:2 ratio. All
the train, test, and validation datasets are disjoint. The fre-
quency distribution of the similarity values of the parent
dataset, U is shown in left side of Figure 2, whereas the
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Table 1. Comparison with Baseline Methods for all the representations

Baseline Methods \ Query Embedding \ Category Embedding \ MALE
None 0.981

eBERT Poincaré 0.977

Linear Regression eBERT 0.954
None 0.968

Spherical Poincaré 0.953

Spherical 0.923

None 0.895

eBERT Poincaré 0.885

CORAL-Ordinal eBERT 0.816

None 0.851

Spherical Poincaré 0.843

Spherical 0.781

None 0.791

eBERT Poincaré 0.798

ORDSIM eBERT 0.567
None 0.613

Spherical Poincaré 0.559

Spherical 0.459

cumulative distribution is shown on the right side. The dis-
tribution of similarity values is not uniform in the 0-1 range,
rather it is right-skewed (similarity values are between 0.6
to 10); this is due to the fact that query-pairs in the datasets
are not randomly chosen, rather they are chosen based on
other similarity ques (such as category match, word token
match, etc.). This is done intentionally because for query
similarity prediction, we want the model to be able to pre-
dict similarity and correctly rank among the top candidates,
not among arbitrary chosen queries. This also requires simi-
larity prediction at the very high similarity value to be very
accurate, even if it comes at the expense of poor prediction
performance at lower similarity value.

Since we use want the similarity prediction at the high
similarity value to be very accurate, we choose similarity
interval of the ordinal labels judiciously. By carefully observ-
ing the similarity value distribution we have chosen 5 ordinal
intervals between 0 and 4. The similarity value interval of
these ordinals labels are as below: 0: (0.00 - 0.82], 1: (0.82,
0.90], 2: (0.90, 0.95], 3: (0.95, 0.97], and 4: (0.97, 1.0]. The fre-
quency distribution over different ordinal labels are shown
in Figure 4. As can be seen, the frequency of the ordinal
labels are roughly uniform.

4.2 Competing Methods

There is hardly any research which performs ordinal regres-
sion in e-commerce queries. For baselines, we choose linear
regression, and CORAL[22] which can work on any corpus.
Each of the baselines is trained with different representations
of queries and categories. Note that, eBERT and spherical

embedding for text can embed both queries and categories
but Poincaré Embedding is performed only for categories.

4.2.1 Linear Regression. Linear regression (LR) although
is not a good fit with ordinal regression, we consider LR
as one of the baselines. The main reason for that is the
query similarity values are well fitted with linear regres-
sion. Moreover, looking into the mean squared error (MSE)
values, representation learning of the queries and categories
can be validated easily. Finally, both the predicted and actual
similarity values can be mapped to ordinal labels using the
same map function H. Once the ordinal labels are calculated,
MALE can be calculated easily to evaluate the performance
of LR.

4.2.2 CORAL-Ordinal. We use CORAL-Ordinal as one
of the baselines which we have already described in sec-
tion 2. Both ORDSIM, and CORAL introduce distinguished
loss functions for ordinal regression. For a fair comparison,
we keep the main model fixed for both of the methods. Only
the output layer is changed between these two.

4.3 Training and Hyper-Parameters

For all the experiments, we have the previously described
train, test, and validation splits. For each of the competing
methods, the train split D is used to train the model, the
hyper-parameters of the best model are picked on the basis
of the performance in the validation split, and each method
is judged by the performance in the test split.

For both CORAL and ORDSIM we tune N, N; for values
{32, 64, 128, 256, 512}; and p; and p, are tuned for probability
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values [0.1-0.9] with an interval of 0.1. For both CORAL and
ORDSIM, we get best performance for N, = 256, N; = 128,
p1 = 0.4 and p; = 0.1. Number of epochs is 1000 for both
methods. Both of them use early stopping with patience
30, and adam optimizer to converge. Lastly, the LR model
is trained with the identical representation set up of for
X; to minimize mean squared error loss. After getting the
predicted similarity scores H is applied to both predicted
and actual similarities for evaluation purpose.

4.4 Results

In this subsection, we want to provide an extensive eval-
uation of all the learned query representations along with
the baseline methods in terms of MALE. We want to show
the best query representation, and overall best score by a
method. Table 1 shows the performance of all the methods,
and the winning representations and method(s) are marked
with bold letters.

It is evident from the result that concatenating the embed-
ding of the categories in the representation vector reduces
MALE which proves the necessity of the category informa-
tion in a query similarity task. Moreover, adding Poincaré
embedding slightly reduces error than excluding the cat-
egory information from the representation vector totally.
Note that the learned vector in Poincaré space is different
than Euclidean and Spherical embedding. Alongside the em-
bedding space mismatch issue, for all the methods neural
networks are trained in the Euclidean space. For linear re-
gression, queries and categories represented by spherical
text embedding achieves the best MALE (0.923), which is
3% better than Poincaré embedding. For all the methods,
spherical text embedding for both query and category em-
bedding provides the best representation of a term pair. For
CORAL, MALE for the best representation is 0.781 which is
4% better than eBERT(0.816). CORAL performs better than
linear regression for every representation. However, in terms
of MALE, ORDSIM achieves the best score (0.459) which is
approximately 42% better than the best of CORAL. Moreover,
in terms of every representation ORDSIM performs better
than any of the baselines including CORAL. This is because
the CORAL method does not use one hot encoding of the
labels. If one of the classifiers fails, count of consecutive ones
from the left reduces which increases the MALE. Addition-
ally, the performance in the most similar queries is affected.
But for the e-commerce queries, identifying the most similar
queries are very important which advocates the necessity of
the proposed ORDSIM method.

To illustrate with an example, let the original ordinal label,
r; for x; is 3. The CORAL represents r; as [1,1,1,0] as K = 5. If
the second classifier of CORAL fails, the predicted output is
[1,0,1,0]. Note that the output will be interpreted as 1, as the
number of consecutive ones from the left to right is 1. Hence,
the predicted label is two distance away from the actual
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label. But r; = 3 represents the second most similar query
bucket. Thus, the impact of the performance of CORAL in
this particular case is severe. On the other hand, the median
value 0y, for r; = 3 bucket is 0.96. So if the predicted similarity
score is far away from this value, it will be penalised by
ATMSEL. So ORDSIM can clearly handle these cases better
than CORAL.

5 Conclusion and Future Work

In this paper, we develop a rank consistent method, ORDSIM
for predicting query similarity. ORDSIM is architecture ag-
nostic and can readily be implemented to extend multilayer
perceptron. We experiment with an e-commerce dataset of
10 million queries and ORDSIM performs 42% better than
the best competing method. Currently, for representation
learning of the e-commerce queries, we use BERT and spher-
ical text embedding. Representing queries with spherical
text embedding can capture the query similarity better than
other embedding methods. Moreover, the hierarchical infor-
mation of the categories for representing queries did not
add necessary information so far. One reason can be — cat-
egories are embedded in Poincaré space while queries are
embedded in Euclidean space. In future, we want to use a
kernel which transforms both the representations in a dif-
ferent space, and a carefully designed neural network can
capture query similarity in that space.
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