The Power of Data: Transforming and
Optimizing Representation Space

--Embedding, Interactive Intelligence, and User Profiling

Yanjie Fu
Department of Computer Science
University of Central Florida



About Me

* Assistant Professor of Computer Science, UCF
* B.E.: University of Science and Technology of China, 2008

 M.E.: Chinese Academy of Sciences, 2011
* Ph.D.: Rutgers University, 2016

e Research: representation, automation, interaction of Al systems
e NSF CAREER Award

» 4 Best Paper (Finalist) Awards: KAIS Best of IEEE ICDM 2021, ACM TSAS Best of
SIGSpatial2020, ACM TKDD Best of SIGKDD2018, KAIS Best of IEEE ICDM2014

* 29 CSRANKINGS.ORG top papers, 2800+ citations, h-index: 26

* Teaching

e 15t PhD Student: Pengyang Wang, TTAP at University of Macau
« 2" PhD Student: Kunpeng Liu, incoming TTAP

e Service

* Area Chairs, Senior PC or TPC members of major Al/DM/ML/DB conferences (e.g., KDD, AAAI,
1JCAI, ICML, NeurlPS, ICLR, ICDM, WWW, SIGIR, SDM, ICDE, VLDB); Guest Editor of ACM TIST
special issue on deep spatiotemporal learning



Ultimate goals of Al: machine intelligence =
numan intelligence

» System 1 intelligence: representation (what happened) and
projection (what will happen)

 System 2 intelligence: reasoning (how and why it changes) and
decision (how to change it)



A Representation (Feature) Space
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Representation is a fundamental perceptual
intelligence and algorithm enabler

* Provide machines with situation * Automate and eliminate feature
awareness to characterize the engineering
state

* Many learning tasks such as
learning with unlabeled data, small
data, or data fusion are built on
representation frameworks

 Embed structure knowledge into

* |dentify and disentangle the
unobserved drivers hidden in data
to fight against the curse of
dimensionality

 Easy the extraction of useful

information in predictive representation to make classic ML
modeling algorithm available to complex
data

* Reconstruct distance measures to
form smooth discriminative * Alignment across domain (domain

patterns adaptation, distribution shift)



Why an optimal data representation space
matters

Task: Identify which customers will BANK
make a specific transaction in the
future (classification)

Data:
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
0.8 0.8
0.75 Human-Reconstructed Data0-75
via Feature Selection,
0.7 Generation, Preprocessing 0.7
0.65 0.65
0.6 0.59 0.6
Logistic Regression Deep Neural Logistic Regression + Deep Neural
Network Feature Engineering Network



Classic machine learning pipelines
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The concept of representation renovates
assic ML pipelines

O

Apply ML (Approximation, Error,
Training)

Shifting research focus of many studies from
optimizing model space to optimizing data space



Autoencoder [Hinton et al.]
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Encoder Decoder

* Input: a graph/matrix; output: embedding of graph/matrix
* The neural encoder and decoder framework
* Goal: Learn embedding by minimizing reconstruction loss



DeepWalk [Perozzi et al.]

* Input: a graph; output: embeddings of nodes

* Goal: Treat random walks on networks as sentences and then learn node representations
with the Skipgram word embedding

* Empirically produce a low-rank transformation of a network’s normalized Laplacian

matrix
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LINE: Large-scale Information Network
Embedding [Tang et al.

* Inputs: Directed, undirected, or
weighted networks

* Goal: learn a node embedding

_ second-order proximity (global structure)
: shared neighborhood

.
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Collective representation learning

* Learning representations from collectively-related graphs

A city Multiple A feature vector

EMonday Tuesday Wednesdayé )

Friday Saturday Thursdayé
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An Ensemble-Encod

Dissemble-Decoding Method

Our Solution
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A Collective Embedding Perspective with Periodic Spatial-temporal Mobility Graphs.

ACM Transactions on Intelligent Systems and Technology, 9, no. 6 (2018): 63

signal dissemble (Multi-perceptron filtering )

signal ensemble (Multi-perceptron

summation )



Dynamic representation learning

* Temporally-related graph streams

A sequence of feature
vectors (driver profiles)

2= il

A car Graph stream
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Our Solution: Peer and Temporal Gated
Recurrent Unit Encoding

Multi-spatial « . &, 9 &, 9 .....
Graphs Series
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Embedding {—} (=} {E—} -......
Vectors
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You Are How You Drive: Peer and Temporal-Aware
Representation Learning for Driving Behavior Analysis. (KDD18)



Substructured representation learning

* A globally-structured graph with unique subgraph patterns
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e
| Substructured Representation Learning: Learning the feature representation |
| of a graph with attention to preserving unique subgraph patterns '



Our Solution: Adversarial Substructured

Learning

* Preserving global structure: minimizing the reconstruction loss

between input graph and reconstructed graph

* Preserving substructure: use adversarial training to force deep

encoder-decoder to pay attention to subgraphs
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Adversarial Substructured Representation Learning for
Mobile User Profiling. (KDD19)



Human-environment interaction: interactive
perception and decision

Human Perceives the Environment Human’s Decisions Change the Environment
Q Perception

DeC|5|on Influences

o Updated Perception

New Decisions

>

Environment

Human Has New Perception on the Human Makes New Decisions Based on
Updated Environment the New Perception




Interactive representation learning

| [ [

Representations
(Human/Environment)

Human-Environment Interaction

Expectation: Representations are updated
incrementally along with interactions




Traditional representation learning criteria
cannot model interactions
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Reconstruction Loss

Minimizing the reconstruction loss
between the input and reconstructed
output

Downstream Task-Oriented
Loss

Minimizing the prediction loss




A new representation criterion: imitation-
based criterion

Sequéence Behavioral Data

Target (user/system)

Accurate
Embeding :, @? Imitation
i . Improved
State -¢DD. [nacf\cu{'ate E Imitation E
! Imitation | |
; | :
? : |
f f
Perception @ i :
Agent . .\ _ | |
Initialization Learning . Reproduction

* Suppose a user/system is perfect in understanding and per the environment

* Train an agent to simulate (mimic) human’s behavior based on the learned
representations of the environment

* The learned representations (perception) is considered perfectly, once the agent can
copy human’s behavior patterns




Our framework: reinforcement interactive

representation learning
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“Incremental mobile user profiling: Reinforcement learning with
spatial knowledge graph for modeling event streams.” (KDD20)



A concrete example: what to do next -
inferring next activity

* Spatial Knowledge Graph as the Physical Environment

Walmart

* Entities: POls, POI categories, functional zones
* Relations: Locate at, Belong to
* Facts:

* <POI, “belong to”, POI category>

* <POI, “locate at”, functional zones>




Model components and structure
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Research gap: how deep Al optimizes data

representation?

Default Representation
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Research gap: how humans optimize data
representation?

Empirical choices

___________________________________________
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Test results
* Explicit and explainable
* Time-consuming, brittle, incomplete



Reimagining the future of representation
(feature) space

Can we equip representation intelligence with full
automation, explainable explicitness, flexible optimal?

e Full automation: how can we make ML less dependent on feature
engineering, construct ML systems faster, and increase applicability of ML?

* Explainable explicitness: how can we ensure traceable and explainable
explicitness in reconstructing data transformation?

* Flexible optimal: how can we create a framework to reconstruct a new data
transformation for any given predictor?



Self-optimizing Data Geometry: Learning to
reconstruct an optimal and explainable data
transformatiorp

Learning to select Learning to :
features generate features f'gzgthlr(“
eedbac
We attempt to e
. Empirical choices
fOfmUlate thlS! r—-————""{@@p¥ —~— "~ """~ =-=-=-=-===-=-——-—"-TQ@P” """ loop

Test results

A ML Pipeline




Research overview of this project

Feature Selection Feature Generation

Generation
(TOIS)

Feature Selection Efficiency (ICDM22 Best

[ Hierarchical Reinforcement Feature ]
(KDD19, TKDE-a) Paper Finalist, ICDM20)

[ Multi-agent Reinforcement] [ Addressing Learning ]

Explicit
Reconstruction

Interactive Learning Group-wise Cascading
Mechanisms (ICDM20, ICDM21, Reinforcement Feature Generation
SDM21, TKDE-b, KAIS) (KDD22)
Multi-arm Bandit Feature

Selection

(SDM21) L
Implicit Collective Representation Substructured Aversa.rlal Interactive Representation

P Learning (TIST) Representation Learning Learning (KDD20, TKDE-e)

Learning 8 (KDD19, TKDE-d) 8 :

Dynamic Representation
Learning (KDD18, TKDE-c)







Feature selection
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Feature selection as an exploration process

» Feature selection: an iterative exploration process to find an
optimal / near optimal subset/subspace of features

Selecting the Optimal Subset

Set of all Generate a Learning
Features Subset Algorithm Performance

\ S




Reinforcement learning as a tool of
exploitation and exploration

rull
Environment
Q RE’Ward
Interpreter
%’ &

Agent

Action

* Applications:

Time t=0 Repositions/Orders  t=1
Environment

Traffic light control via RL Taxi fleet management via RL

33



Automated feature subspace exploration

* Inspiration: Can reinforcement learning help to automate feature
selection?

ﬂVIFOHm ent

Selecting the Optimal Subset

Wary Generate a Learnin — ;

Inter reter : .

p Subset Algorithm

S
%—» - v
Agent
Reinforcement Learning Feature Selection
As A Tool of Exploration (Exploration Problem)

Traceable & explainable + automated & self
learning + global optimal



Overview of RFSL for explainable and optimal
representation subspace reconstruction

Reinforcement feature selection learning (RFSL): learn a feature selector that
* Traceable: record selection process and understand semantic feature labels

* Self-optimizing: automatically automatically select the best feature subset to
identify an optimal representation subspace

ﬂ’wronm ent

Selecting the Optimal Subset

+ Generate a : Learning
Subset Algorithm

|

Reinforcement Learning Feature Selection
As A Tool of Exploration (Exploration Problem)

sta e
Interpreter
%%

Agent




Our goal: leveraging reinforcement
intelligence for self-optimizing selection

Intepretator

Env is the selected

Feature Subset
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A feature is controlled
by an agent



How to accurately represent situational state:
a graph perspective

Selected Feature Matrix Feature Correlation Graph @ State Vector
J1 /3 fe fs fo '
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e Step 1: Draw a fully-connected feature- feature correlation graph.
 Step 2: Update each feature’s representation.
 Step 3: Aggregate all features’ representations.



How to fairly assign reward: personalize incentives
for participating and non-participating agents

_ Current Iteration Previous Iteration

Participating agents Select
Select
Deselect

Non-participating agents Deselect

* Participating agents

e Equally share the overall
reward

* Non-participating agents:

e O reward

Select
Deselect
Select
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How to improve training data quality in experience
replay: GMM based rectified sampling

High-quality
data
Split S ——] Sample ==
: — = 5
Sample 7
%,
[vhole ? New Mini-Batch
dataset dataset
Whole Mini-Batch GMM
dataset
Low-quality
data
Conventional sampling strategy. GMM based sampling strategy.

* Modeling heterogeneity of data samples via mixture model based
rectified sampling

* Promoting diversity and coverage of sampling strategies
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Can our study improve feature selection

performance?
Predictors

RF LASSO DT SVM | XGBoost

K-Best 0.7943 | 0.8246 | 0.8125 | 0.8324 0.8076

» | mRMR 0.8042 | 0.8124 | 0.8096 | 0.8175 0.8239

E LASSO 0.8426 | 0.8513 | 0.8241 | 0.8131 0.8434

'g RFE 0.8213 | 0.8236 | 0.8453 | 0.8257 0.8348

20 | GFS 0.8423 | 0.8318 | 0.8350 | 0.8346 0.8302

= SARLEFS 0.8321 | 0.8295 | 0.8401 | 0.8427 0.8450

MARLES | 0.8690 | 0.8424 | 0.8583 | 0.8542 | 0.8731

* Benchmark application
e Data: 15120*54, 7 labels; Task: Classification

 Baselines:

» K-Best Selection, mRMR, LASSO, Recursive Feature Elimination (RFE), Genetic Feature
Selection (GFS), Single-Agent Reinforcement Learning Feature Selection (SARLFS)

* Evaluation Metrics: overall classification accuracy



Human learning
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Humans learn vertically and
horizontally

* Learning "vertically”
» Supervised learning of historical successes and
mistakes

* Gibson’s theory of development (Eleanor Gibson)

* Learning "horizontally”

* Interactive learning from peer experiences in the
same problem domain

“The more chances they
are given to perceive and
interact with their
environment, the more
affordances they
discover, and the more
accurate their
perceptions become.”

Eleanor Gibson




Machines are limited in interactive abilities
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A finding: interactive learning as supervision
signal to robustize reinforcement

* Reinforcement learning: generating data while learning via trials and errors

e Strength: self-optimizing, doesn’t need training data
* Weakness: hard to tune and slowly grow quality policies

e Supervised learning

* Strength: reliable success rate
* Weakness: need lots of training data

e Can we integrate supervision with reinforcement?

* Let external trainers and prior knowledge in the same task domain interact with
reinforcement agents to guide agent learning

Interactive Reinforcement
Peer Experiences as Supervision + Adapt Past and Peer Experiences into Knowledge



Overview of interactive RFSL for
representation subspace identification
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Diversity-aware interaction mechanism (1):
diversified external trainers

Control
O O ‘ Policy Train
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We propose multiple external trainers:
v' KBest based trainer
v Decision Tree based trainer
v mRMR



Diversity-aware interaction mechanism (2):
diversified participated features

ooooooo
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Diversify the selection of various features as the input of trainers
(traditional feature selection methods) to generate diverse advice



Diversity-aware interaction mechanism (3):
diversified advice for different agents

ooooooo

eeeeeeeeeeeeee e
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Assertive Agents o) Il Reward
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* Assertive agents: do not need to follow advices from external trainers
* Hesitant agents: follow advices from external trainers



Diversity-aware interaction mechanism (4):
diversified hybrid teaching strategy

* Different trainers provide
advice at different stages




Evaluation Dataset

* Public ally available Kaggle competition datasets
* Forest Cover (FC), Spambase, Insurance Company Benchmark (ICB), MUSK

ForestCo | Spamba ICB Musk
ver se
Features 54 57 86 168
Samples | 15120 4601 5000 6598

Our system

Selected feature subset as

optimal representation

subspace

A downstream ML
task (DT, regression)

Accuracy

51



Can our method improve
performance? Results on

0.92

o
©
—

o
(o]
o

Overall Best Acc
_CD o
(0] (0]
(0] ©

o
oo
~

0.86

‘eature selection

CB

 Baselines:

KBest
DT-RFE
mRMR

. LASSO
s MARLFS
B [RFS

 KBest Feature Selection
* mRMR

* DT-RFE (Decision Tree
Recursive Feature
Elimination)

* LASSO

* MARLFS (Multi-agent
Reinforcement Learning
Feature Selection)

Our method: IRLFS.
For the accuracies,
the higher, the better.




Can our interactive strategy improve learning
efficiency? Results on ICB

il Pl ——— )
0.910 7 * Variants
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=, 0.905 - trainer
9 e KBT: IRLFS with KBest
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2 0.890 A @ ® MARLFS E@I_ql_chlng by KBT and
e v KBT .
0.885 A DTT * Metrics:
» HT * Best Accuracy@Step
0.880 -

250 500 750 1000 1250 1500
Exploration Step






DNNs create new features in a latent space

* DNNs create new features at multi-levels of abstraction
e Capture variation patterns in an embedding space
* Transform the data into a set of principal components
* Remove redundancy in representation
* Handle indirect relationship between features and goals

* When DNNs outperform linear regression on a selected feature
subset

* Reason: the selected features are not complete and optimal, while DNNs
create newer, more complete, discriminative dimensions

* Can we imitate the feature generation capability of DNNs in an explicit space?



Can machines imitate DNNs to create new,
features in an explicit space?

* Feature Selection

Feature Set

Identify Useful Features

PP 1]l

Selected Feature Subset

Philosophy: Improve the representation
space from a reduction perspective

* Feature Generation

Feature Set

Generate Informative Features

""""""""""""""""""""

Philosophy: Improve the representation space
from an addition perspective



Proposed Solution: Group-wise reinforcement
feature generation learning

Reinforcement feature generation learning (RFGL): learn a feature generator that
1. Explainable Explicitness: explicit generation process with semantic labels

2. Self-optimizing: automatically reconstruct a new feature space
3. Efficiency and reward augmentation: group-wise generation

Iterate
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Goal 1: a principled iterative nested generation
and selection framework: elements and structure

Input Data Table
as Raw Data
Geometry

Iterations

Iterations

Feature
Generation

Nested within Iterations
\ 4

Feature
Selection

v

Output Data Table as
Reconstructed Data Geometr




Goal 2: cascading reinforcement learning for
automated and explicit feature generation

Original

Add
v
Feature Operation
Set Set
// \\ \\
b\ l
Feature Feature Operation || !
Agent 1 Agent 2 Agent

Generate

New

Feature

* Feature Agent 1---> Feature 1

* Operation Agent --->
Operation

* If operation is unary:
* Conduct Operation on Feature 1

* If operation is binary:
* Feature Agent 2---> Feature 2

* Conduct Operation on Feature 1
and Feature 2



Cascading state sharing
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Goal 3: group-wise feature generation

!
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Demo setup: datasets, tasks, and algorithms

* Feature set:
* f1:Frequency {sqrt, square, sin, cos, tanh,
* f,: Angle of attack +, -, *}
* f3: Chord length
* fa: Free-stream velocity
* f5:Suction side displacement thickness

* Task:

* To predict if the scaled sound pressure level is larger than threshold (classification)
e Algorithm:

 Random forest classifier

e Platform:

* CPU:19-9920X 3.50GHz, memory: 128GB memory, operation system:
Ubuntu 18.04 LTS



Algorithmic tool and demonstration systems

Exploration Process of Reinforced Iterative Feature Generation (RIFG)




s RIFG fast and interpretable?

* Time elapsed:
* 7 mins 37 secs

* Improvement:
* Accuracy: 0.824 ->0.907 10.07%
* Precision: 0.822 ->0.909 10.58%
e Recall: 0.863->0.916 6.14%
* F1:0.842 ->0.909 7.95%

* Generated features (best accuracy):

* {f1, tanh(f1), Si;’t(f3 « fs), (fa —f1 * f5)2\/fa » cos(tanh(fy)) , cos(sin(fo—(fox f2)2)),
(fox faxfs + 1" * fa)° }



Demo: take 25 seconds to improve Recall

as A Bot in Kaggle

'rom 0.816 to 0.879
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Conclusion Remarks

Optimizing data representation space versus optimizing model structure space?
* From models to data

Latent representation learning versus explicit representation reconstruction
* From empirical and handcrafted to automated

* From latent to explicit
* From Blackbox to explainable and traceable

* A wide range of applications
* Better prediction: Your current deployed ML systems (e.g., recsys) can do a better job

e Green computing: You can use a simple model with the optimized data reconstructed by our
tool to achieve similar performances with complex deep models of large parameters

* Representation as a tool of user, system, product, location profiling and characterization

How reliable is our method for practical deployment?

* Automated, explainable, traceable, take some time to explore but time costs can be reduced
by pre-training via offline RL with data in the same problem domain

* Convert agents’ decisions into a task of generating decision sequences and optimize the
performances in a continuous space via embedding



