Understanding Multi-channel Customer Behavior in Retail

Mozhdeh Ariannezhad
Maarten de Rijke
FEBRUARY 25, 2022

Talk based on joint work with Mozhdeh Ariannezhad, Sami Jullien, Pim Nauts, Min Fang, Sebastian Schelter

BACKGROUND

MULTI-CHANNEL SHOPPING

Online (mobile app, web)

Offline (in-store)

凅

Ongoing development sped up by pandemic

- Complementing offline (in-store) shopping with online shopping

MULTI-CHANNEL SHOPPING

Online (mobile app, web)

Offline (in-store)

Ongoing development sped up by pandemic

- Complementing offline (in-store) shopping with online shopping
■ Multiple shopping channels
- Purchase items across all
- Leverage one channel to prepare for purchase in another
- Richer data for personalizing shopping experience

UNDERSTANDING CUSTOMER BEHAVIOR

■ Basis for downstream machine learning tasks

- Product recommendation, purchase prediction, ...

UNDERSTANDING CUSTOMER BEHAVIOR

■ Basis for downstream machine learning tasks

- Product recommendation, purchase prediction, ...

■ Rich body of previous work studying user behavior in online shopping

- Click stream data, transaction data, digital receipts extracted from email, transactions logs of banks, product search engine log, ...
- Single channel only

UNDERSTANDING CUSTOMER BEHAVIOR

■ Basis for downstream machine learning tasks

- Product recommendation, purchase prediction,...

■ Rich body of previous work studying user behavior in online shopping

- Click stream data, transaction data, digital receipts extracted from email, transactions logs of banks, product search engine log, ...
- Single channel only
- Relatively little known about multi-channel customer behavior
- Mostly in marketing and retail research (interviews, customer surveys, ...)
- Transaction analysis based on (Ariannezhad et al., 2021)

AgENDA

- Background
- Multi-channel customer behavior in retail
- Next basket recommendation
- Wrap-up

MULTI-CHANNEL CUSTOMER BEHAVIOR IN RETAIL

DATA AND TERMINOLOGY

■ Sample of 2.8 M transactions during an 8 week period from 300,000 customers from a European food retailer, with physical stores and online platforms

- Three groups of customer
- Online-only
- Offline-only
- Multi-channel
- Same product catalog for in-store and online
- Track customers across offline and online channels through their loyalty card
- Next: compare shopping behavior of these groups, then use insights gained

EXTRACTION OF TRANSACTION DATA

- Only customers with a loyalty card, so that we are able to track customers within and across channels
- Sample 100,000 customers at random from each group during period of interest and extract their transactions
- Each transaction marked as either online or offline: represents a basket

COMPARISON OF GROUPS: PURCHASE FREQUENCY

■ Multi-channel customers have largest number of baskets, online only smallest
■ Offline only and multi-channel customers similar behavior w.r.t. shopping times: median of 3 days between consecutive baskets, 90% percentile of 7 days
■ Median for online only 7 days, partly because of possibility of selecting fixed delivery day for a series of online baskets

COMPARISON OF GROUPS: QUANTITY AND VARIETY OF ITEMS

■ Normalized unique items: number of unique items / number of baskets
■ Offline-only customers smallest number of unique items and normalized items; multi-channel highest unique items; online-only more unique items when number of baskets is considered
■ Due to (online) access to full catalog plus ease of delivery

COMPARISON OF GROUPS: PROMOTIONS \& REPEATS

■ Discount proportion (amount of discount per basket / basket value) similar for different groups

- Repeat ratio (number of unique items / total number of items purchased across baskets) highest for online-only

MULTI-CHANNEL CUSTOMERS: ONLINE OR OFFLINE?

■ For about half of multi-channel customers, online baskets are dominant; for other half, offline baskets
■ Overlap between online and offline customers is minimal for most customers: different channels serve different buying needs

- Offline shopping peaks during Fridays and Saturdays, online shopping uniformly distributed across week days
■ 20% have 0.5 channel switch probability ($40 \%:<0.5,10 \%: 100 \%$)

ONLINE VS OFFLINE BASKETS

■ Item variation: basket size / \# unique items ; category variation: basket size / \# unique item categories
■ Online baskets have more unique items and categories, not much difference in variation \rightarrow difference in unique items and categories mostly due to bigger basket size

NEXt BASKET RECOMMENDATION

Hypothesis: Channel matters

- Seen: Differences in behavior between different groups / different channels

Hypothesis: Channel matters

■ Seen: Differences in behavior between different groups / different channels
■ Hypothesis: Taking channel into account helps predictive performance of downstream tasks

Hypothesis: CHANNEL MATTERS

■ Seen: Differences in behavior between different groups / different channels
■ Hypothesis: Taking channel into account helps predictive performance of downstream tasks

- Case study: Next basket recommendation
- Predict the set of items that a customer will purchase in their next basket, given their purchase history

NEXT BASKET RECOMMENDATION

- Given history of baskets for customer u, defined as $B^{u}=\left\{B_{1}^{u}, B_{2}^{u}, \ldots, B_{n}^{u}\right\}$, where B_{i}^{u} is a basket of items defined as $B_{i}^{u}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, and $x_{i} \in X$ denotes an item from catalog X, the goal is to predict the items in the next basket of the customer, i.e., B_{n+1}^{u}.

NEXT BASKET RECOMMENDATION

- Given history of baskets for customer u, defined as $B^{u}=\left\{B_{1}^{u}, B_{2}^{u}, \ldots, B_{n}^{u}\right\}$, where B_{i}^{u} is a basket of items defined as $B_{i}^{u}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, and $x_{i} \in X$ denotes an item from catalog X, the goal is to predict the items in the next basket of the customer, i.e., B_{n+1}^{u}.
- For the basket history B^{u}, the recommendation model assigns a score to all items $x_{i} \in X$, and the top- k items are returned as the candidate items for the next basket recommendation

NEXT BASKET RECOMMENDATION

■ Given history of baskets for customer u, defined as $B^{u}=\left\{B_{1}^{u}, B_{2}^{u}, \ldots, B_{n}^{u}\right\}$, where B_{i}^{u} is a basket of items defined as $B_{i}^{u}=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, and $x_{i} \in X$ denotes an item from catalog X, the goal is to predict the items in the next basket of the customer, i.e., B_{n+1}^{u}.
■ For the basket history B^{u}, the recommendation model assigns a score to all items $x_{i} \in X$, and the top- k items are returned as the candidate items for the next basket recommendation
■ How effective is next basket recommendation for different types of customer (offline, online, multi-channel)?

WHAT NEXT BASKET RECOMMENDATION METHOD(S) TO CONSIDER?

■ Lessons from Li et al. (2021)

- Comparison of three families of NBR methods...

■ Frequency-based
■ Nearest neighbor-based

- Deep learning-based
- ... on three datasets

■ TaFeng

- Dunnhumby
- Instacart

WHAT NEXT BASKET RECOMMENDATION METHOD(S) TO CONSIDER?

Dataset		TaFeng			Dunnhumby			Instacart		
Size	Methods	Recall	NDCG	PHR	Recall	NDCG	PHR	Recall	NDCG	PHR
10	G-TopFreq	0.0803	0.0842	0.2489	0.0987	0.1054	0.4624	0.0721	0.0820	0.4543
	P-TopFreq	0.1072	0.0959	0.3487	0.2319	0.2342	0.6569	0.3264	0.3381	0.8437
	GP-TopFreq	0.1215	0.1019	0.3706	0.2356	0.2360	0.6660	0.3273	0.3387	0.8451
	UP-CF@r	0.1257	0.1110	0.3996	0.2429	0.2471	0.6761	0.3511	0.3634	0.8642
	TIFUKNN	0.1259	0.1020	0.3871	0.2398	0.2411	0.6774	0.3608*	0.3726*	0.8640
	Dream	0.1143	0.1030	0.2991	0.0974	0.1049	0.4639	0.0722	0.0818	0.4560
	Beacon	0.1180	0.1075	0.3006	0.0991	0.1055	0.4655	0.0724	0.0820	0.4575
	CLEA	0.1184	0.1048	0.3083	0.1548	0.1726	0.5533	0.1227	0.1444	0.5633
	Sets2Sets	0.1360	0.1132	0.4104	0.1708	0.1491	0.5854	0.2125	0.1923	0.7185
	DNNTSP	0.1537*	0.1321*	0.4487^{*}	0.2388	0.2409	0.6771	0.3337	0.3401	0.8498

WHAT NEXT BASKET RECOMMENDATION METHOD(S) TO CONSIDER?

■ No state-of-the-art NBR method, deep learning-based, consistently shows best performance across datasets

- Compared to a simple frequency-based baseline, improvements of SOTA methods are modest or even absent

■ Clear difficulty gap and trade-off between repeat task and explore task
■ Deep learning-based methods do not effectively exploit repeat behavior; they achieve relatively good explore performance

WHAT NEXT BASKET RECOMMENDATION METHOD(S) TO CONSIDER?

■ No state-of-the-art NBR method, deep learning-based, consistently shows best performance across datasets

- Compared to a simple frequency-based baseline, improvements of SOTA methods are modest or even absent

■ Clear difficulty gap and trade-off between repeat task and explore task
■ Deep learning-based methods do not effectively exploit repeat behavior; they achieve relatively good explore performance
■ So? Choose P-TopFreq (personal top frequency)

Next basket recommendation with P-TopFreq

Prediction target	$k=10$			$k=20$			$k=50$		
	Recall	nDCG	PHR	Recall	nDCG	PHR	Recall	nDCG	PHR
Online-only customers	0.1582	0.5873	0.9743	0.2459	0.4993	0.9882	0.3988	0.4564	0.9939
Offline-only customers	0.1773	0.2716	0.7331	0.2435	0.2664	0.7998	0.3448	0.2951	0.8664
Multi-channel customers	0.1282	0.3696	0.7688	0.1950	0.3292	0.8242	0.3085	0.3124	0.8838
Multi-channel customers, online target basket	0.1431	0.5946	0.9816	0.2265	0.5068	0.9916	0.3677	0.4372	0.9968
Multi-channel customers, offline target basket	0.1163	0.1891	0.5981	0.1697	0.1867	0.6899	0.2609	0.2123	0.7931
Multi-channel customers, target channel known	0.1373	0.3808	0.7882	0.2027	0.3387	0.8369	0.3095	0.3191	0.8846

■ Strong performance of a simple method

Next basket recommendation with P-TopFreq

Prediction target	$k=10$			$k=20$			$k=50$		
	Recall	nDCG	PHR	Recall	nDCG	PHR	Recall	nDCG	PHR
Online-only customers	0.1582	0.5873	0.9743	0.2459	0.4993	0.9882	0.3988	0.4564	0.9939
Offline-only customers	0.1773	0.2716	0.7331	0.2435	0.2664	0.7998	0.3448	0.2951	0.8664
Multi-channel customers	0.1282	0.3696	0.7688	0.1950	0.3292	0.8242	0.3085	0.3124	0.8838
Multi-channel customers, online target basket	0.1431	0.5946	0.9816	0.2265	0.5068	0.9916	0.3677	0.4372	0.9968
Multi-channel customers, offline target basket	0.1163	0.1891	0.5981	0.1697	0.1867	0.6899	0.2609	0.2123	0.7931
Multi-channel customers, target channel known	0.1373	0.3808	0.7882	0.2027	0.3387	0.8369	0.3095	0.3191	0.8846

■ Strong performance of a simple method
■ Online-only $>$ Multi-channel $>$ Offline-only - correlates with repeat ratio

Next basket recommendation with P-TopFreq

Prediction target	$k=10$			$k=20$			$k=50$		
	Recall	nDCG	PHR	Recall	nDCG	PHR	Recall	nDCG	PHR
Online-only customers	0.1582	0.5873	0.9743	0.2459	0.4993	0.9882	0.3988	0.4564	0.9939
Offline-only customers	0.1773	0.2716	0.7331	0.2435	0.2664	0.7998	0.3448	0.2951	0.8664
Multi-channel customers	0.1282	0.3696	0.7688	0.1950	0.3292	0.8242	0.3085	0.3124	0.8838
Multi-channel customers, online target basket	0.1431	0.5946	0.9816	0.2265	0.5068	0.9916	0.3677	0.4372	0.9968
Multi-channel customers, offline target basket	0.1163	0.1891	0.5981	0.1697	0.1867	0.6899	0.2609	0.2123	0.7931
Multi-channel customers, target channel known	0.1373	0.3808	0.7882	0.2027	0.3387	0.8369	0.3095	0.3191	0.8846

■ Strong performance of a simple method
■ Online-only > Multi-channel > Offline-only - correlates with repeat ratio
■ For multi-channel: online basket > offline basket; knowing about online behavior does not help offline basket prediction

Next basket recommendation with P-TopFreq

Prediction target	$k=10$			$k=20$			$k=50$		
	Recall	nDCG	PHR	Recall	nDCG	PHR	Recall	nDCG	PHR
Online-only customers	0.1582	0.5873	0.9743	0.2459	0.4993	0.9882	0.3988	0.4564	0.9939
Offline-only customers	0.1773	0.2716	0.7331	0.2435	0.2664	0.7998	0.3448	0.2951	0.8664
Multi-channel customers	0.1282	0.3696	0.7688	0.1950	0.3292	0.8242	0.3085	0.3124	0.8838
Multi-channel customers, online target basket	0.1431	0.5946	0.9816	0.2265	0.5068	0.9916	0.3677	0.4372	0.9968
Multi-channel customers, offline target basket	0.1163	0.1891	0.5981	0.1697	0.1867	0.6899	0.2609	0.2123	0.7931
Multi-channel customers, target channel known	0.1373	0.3808	0.7882	0.2027	0.3387	0.8369	0.3095	0.3191	0.8846

■ Strong performance of a simple method
■ Online-only > Multi-channel > Offline-only - correlates with repeat ratio
■ For multi-channel: online basket > offline basket; knowing about online behavior does not help offline basket prediction
■ Oracle: knowing the target channel helps improve NBR, even for P-TopFreq

WRAPPING UP

What have we done?

■ First (transaction log based) study of customer behavior in multi-channel setting in retail
■ Sample of 2.8 M transactions from 300,000 customers of food retailer
■ Differences in behavior across online and offline - basket size, repeat ratio
■ Performance of downstream prediction task (next basket recommendation) using these insights
■ Different performance levels for different types of customer (online, offline, multichannel)

What should we do next?

■ Address target channel prediction
■ Address explore item prediction
■ Investigate treatment effect - users who repeat more, benefit more from effective NBR methods

■ In all of this, take characteristics of channel / multi-channel on board for prediction tasks

Two PAPERS

References I

M. Ariannezhad, S. Jullien, P. Nauts, M. Fang, S. Schelter, and M. de Rijke. Understanding multi-channel customer behavior in retail. In CIKM 2021: 30th ACM International Conference on Information and Knowledge Management. ACM, November 2021.
M. Li, S. Jullien, M. Ariannezhad, and M. de Rijke. A next basket recommendation reality check. arXiv preprint arXiv:2109.14233, September 2021. URL https://arxiv.org/pdf/2109.14233.

